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A bit of history 
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Ned Birdsall’s students and postdocs 
•  1960’s  Postdocs 

–  Bill Bridges  Bruce Langdon 
–  Laird Haas 
–  Ronald Lundgren 
–  Jeff Frey 
–  Jack Byers 
–  Tao-Yuan Chang 
–  Akira Hasegawa 
–  Nathan Lindgren 
–  Hideo Okuda 
–  Masaaki Watanabe 
–  Liu Chen 

•  1970’s 
–  Bill Nevins  Judy Harte 
–  Mike Gerver  Yoshi Matsuda 
–  Jae-Koo Lee  Alex Friedman 
–  Yu-Jiuan Chen  Bill Fawley * 
–  Doug Harned 
–  Vince Thomas 
–  Niels Otani 

  

•  1980’s  Postdocs 
–  Kwang-Youl Kim  Tom Crystal 
–  Bill Lawson  Kim Teilhaber 
–  Lou Ann Schwager  Bill Lawson * 
–  Scott Parker  Scott Parker * 
–  Rich Procassini  Greg DiPeso * 
–  M. V. Alvez  Ian Morey 

•  1990’s 
–  Vahid Vahedi  Alfonso Tarditi 
–  Dave Cooperberg  X. Xu 

 John Verboncoeur 
 Vahid Vahedi 
 Venkatesh Gopinath 
 Peggy Christenson 
 Helen Smith 

•  2000’s 
–  Keith Cartwright  Hae June Lee 
–  Peter Mardahl 
–  Emi Kawamura 
–  Kevin Bowers 
–  W. Qiu                          (* denotes short-term) 
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Throughout my career I have benefitted from Ned and his work 

•  Ph.D. studies, Cornell with Ravi Sudan (1973 – November 1978): 
– Birdsall / Langdon papers & notes  

•  Postdoc with Ned through November 1980 
– Extended my thesis work 
–  “Solver” for dispersion relations (H. S. Au-Yeung, Y-J. Chen) 
– Direct-implicit plasma simulation (with B. Cohen, B. Langdon)  

(in response to J. Denavit’s comment that “moments”  
are necessary) 

•  LLNL from November 1980 – laser / magnetic / heavy-ion fusion (HIF) 
– HIF “VNL” collaboration of LBNL, LLNL, PPPL 
– UCB & Univ. Maryland groups important collaborators 

•  Nurturing from, and friendship with, Ned throughout my career 
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November 2005 – Bruce Cohen, Ned, and myself 
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Warp code origins and overview 
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Heavy-Ion Inertial Fusion (HIF) – an approach to Inertial Fusion 
Energy using particle accelerators as drivers 

7 

The beams are “space charge dominated” – they are non-neutral plasmas! 
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Warp code goal: end-to-end, self-consistent predictive capability 

 
 
 
 
 
•  A PIC-based code & framework for simulating particle beams & plasmas 
•  Originally developed for Heavy Ion Fusion by LLNL, LBNL, & collaborators 
•  Now “open source” and supports a much broader range of applications 

8 

from source…�

…to target �
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Basic architecture of Warp: 
  

user scripting via Python; 
 

integer-time advance 
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Warp combines efficient Fortran number-crunching with a 
modern, object-oriented Python upper layer and user interface 

•  Our “FORTHON” system* links Python and Fortran;  
code variables are accessable at both levels 

•  Input files are Python programs (some are thousands of lines long); 
thus Warp is a set of “physics extensions to Python” 

•  Run interactively from the terminal or as batch (or GUI, rarely used) 

10 

From warp import * 
… 
nx = ny = nz = 32 
dt = 0.5*dz/vbeam 
… 
initialize() 
step(zmax/(dt*vbeam)) 
… 

Import Warp modules & routines  
     into Python 
Set # of grid cells 
Set time step 
 
Initialize internal FORTRAN arrays 
Push particles for N time steps  
     with FORTRAN routines 

*http://hifweb.lbl.gov/Forthon 

Ned took great joy from interactive codes — many of us caught the bug! 
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We’d like time to advance from one integer level to the next 

•  “Isochronous” leapfrog (x and v always stored at integer times): 
 n-3/2  n-1  n-1/2  n  n+1/2 

 
   v 
   x 
                                          Poisson solve 

    v   
•  Leapfrog is faster and avoids breaking the particle loop for field-solving: 

 n-3/2  n-1  n-1/2  n  n+1/2 
 

 v 
  x 

 … but want integer-time x’s & v’s for diagnostics, dumps, injection, variable ∆t 

an-1∆t/2 

an∆t/2 

vn-1/2∆t/2 

an-1∆t 
vn-1/2∆t 

 Ned taught us to write the diagnostics first – we wanted to keep that simple 
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We combine leapfrog with “special” steps for best of both worlds 

•  Most of the time (typ. 9 out of 10 steps) we do a leapfrog “Fullv” advance: 
 n-3/2  n-1  n-1/2  n  n+1/2 

 
  v 
   x 

•  “Synchv” step is used to syncronize x & v, to prep for diagnostics, dumps, … 
 n-3/2  n-1  n-1/2  n  n+1/2 

 
   v   

•  “Halfv” step is used at t = 0, or when x and v were sync’d on previous step 
 n-3/2  n-1  n-1/2  n  n+1/2 

 
   v 
   x 

•  When B fields etc. are included, it is complicated to keep results identical for 
different diagnostic intervals; so most run series keep a fixed interval 

an-1∆t/2 

an∆t/2 

vn-1/2∆t/2 

an-1∆t 
vn-1/2∆t 
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Geometries, 
 

“cut cells,” 
 

Drift-Lorentz mover  
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Geometries: 3-D (x,y,z)          axisym. (r,z)           2-D (x,z)              2-D (x,y) 

" "   " "     " "�

Bent beam lines motivated “warped” Cartesian coordinates 
    with no expansion about a “reference orbit”* 

 
 

 
 

 
 

 
 

 
*A. Friedman, D. P. Grote, and I. Haber, Phys. Fluids B 4, 2203 (1992)�

Warp offers several geometries, and a novel approach to 
simulating bent beam lines 

Lab frame view Warped coord’s. view Q=+1 

Q=+3 
Q=+2 

Foil 
Q=+1 

y z 

x 

Example: beam stripping through a foil & charge selection in a chicane 

s 
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“Cut cells” offer subgrid-scale conductor-edge description  

•  “Lego bricks” did not yield accurate enough fields 
•  Novel integration of 3-D Shortley-Weller boudary conditions in a PIC code 

 (a similar approach was developed independently by D. Hewett) 
•  Also: time-dependent space-charge limited injection from curved surfaces 

Ned encouraged us to model realistic systems, not just ideal ones. 

HCX electrostatic-quadrupole injector 
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Warp video of HCX beam, showing transition from 3-D lab-frame 
to tracking of a central “slice” of beam in (x,y)  
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Problem: Electron gyro period in strong B field  <<  other timescales of interest 
                ⇒ brute-force integration very slow due to small Δt 
Solution*: Interpolation between full-particle dynamics (“Boris mover”) and drift 

kinetics (motion along B plus drifts) 

 
                                           Lorentz mover velocity       Drift velocity 
correct gyroradius with 

Novel “Drift-Lorentz” mover addresses the challenge of short 
electron timescales in magnetic field 

quad 

*R. Cohen et. al., Phys. Plasmas, May 2005 

Magnetic quadrupole         Sample electron motion 
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run time ~3 cpu-days; 
would be ~1-2 months 
without new electron  
mover and MR.�

Warp predicted electron bunching oscillations on HCX when the 
ion beam was deliberately directed onto the end wall 

WARP-3D 
T = 4.65µs 

Oscillations 

Beam ions 
hit end 

plate 

(a)! (b)! (c)!
e-!

0V               0V           0V/+9kV              0V 

Q4!Q3!Q2!Q1!
200mA K+	



200mA 	


K+	



       Electrons!

Electron 
bunching 

~6 MHz signal at (C) 

 
  (c)!

0.            2.      time (µs)       6. 

Simulation �
Experiment�0. 

 

 
-20. 

 

 
-40. 

I (
m

A
) 

• Vay, J-L.; Furman, M.A.; Seidl, P.A.; Cohen, R.H.; 
Friedman, A.; Grote, D.P.; Covo-Kireeff, M.; Lund, S. 
M.; Molvik, A.W.; Stoltz, P.H.; Veitzer, S.; Verboncoeur, 
J.P., Nucl. Inst. and Meth. A 577,65–69 (2007). 

• A. W. Molvik, M. Kireeff Covo, R. Cohen,  
A. Friedman, S. M. Lund, W. Sharp, J-L. Vay,  
D. Baca, F. Bieniosek, C. Leister, and P. Seidl, Phys. 
Plasmas 14, 056701 (2007) 
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Mesh refinement, 
 

boosted frame 
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Mesh-refined Warp EM simulation of ion-beam-induced plasma 
wake illustrates speedup 

 no refinement                    2 levels of mesh refinement (MR)  
 

2-D high resolution 3-D 
    2-D low resolution 

 + MR 

• Speedup was ten-fold in 3-D (same Δt for all refinement levels) 
 
 
J-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, Comput. Sci. Discovery 5, 014019 (2012).  
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Lab 
frame 

Boosted 
frame 

Lorentz-boosted frame1 (rotation in space-time) brings disparate 
scales closer together and reduces computational effort 

Spatial oscillations are converted to time beating 
(scaled BELLA simulation2 by Jean-Luc Vay, LBNL, using Warp) 

•  Applied to laser-plasma accelerators, FEL’s, beams interacting with electron clouds 
•  A revised “Boris” mover3 was also invented by Vay to preserve Lorentz invariance 

1 J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007). 
2 J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, Phys. Plasmas 18, 123103 (2011). 
3 J.-L. Vay, Phys. Plasmas 15 056701 (2008). 
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NDCX-II 
 

The range of uses of Warp 
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Neutralized Drift Compression Experiment-II (NDCX-II) at LBNL 

ION BEAM !
BUNCH!

TARGET  
FOIL!

A user facility for studies of: 
– warm dense matter physics 
– heavy-ion-driven target physics 
– space-charge-dominated beams 

VOLUMETRIC 
DEPOSITION!
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3-D Warp simulation of beam in the NDCX-II linac 

ndcx40g	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  simula*on	
  and	
  movie	
  from	
  D	
  P	
  Grote	
  
exiting 

accelerating 

entering 



The Heavy Ion Fusion Science 
Virtual National Laboratory 26 

3-D Warp simulation of NDCX-II beam (video) 
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•  256 cases were run in each NERSC batch job 
•  The start times of the acceleration pulses were varied randomly 

“Ensemble” Warp runs yielded an optimized NDCX-II design 

2 

Spread at zero 
jitter due differing 
random seeds  

Relative to 1-D ASP 

2 

Relative to prev. best case 

2 

Relative to prev. best case 

FO
M

 

timing jitter (ns) timing jitter (ns) timing jitter (ns) 
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Warp simulations of multipactor predicted new “ping-pong” modes 
 
 
 
 
 
 
 
 
 
 
 

 
Virtual cathode oscillations  
in UMER gun, predicted by  
Warp simulations, were  
measured near predicted 
frequency. 

	
  	
  
	
  

Schema*c	
  of	
  par*cle	
  orbits	
  in	
  a	
  	
  
period-­‐2	
  ping-­‐pong	
  mul*pactor.	
  

Simulated	
  	
  
current	
  

“The	
  nice	
  thing	
  is	
  WARP	
  predicted	
  it	
  
first,	
  and	
  then	
  resulted	
  in	
  good	
  
agreement	
  once	
  I	
  worked	
  out	
  the	
  
details	
  of	
  the	
  theory.”	
  	
  
–	
  R.	
  Kishek,	
  U.	
  Maryland	
  
 
R.A.	
  Kishek,	
  “Ping-­‐Pong	
  modes:	
  a	
  new	
  
form	
  of	
  mul*pactor,”	
  Phys.	
  Rev.	
  Le1.	
  
108,	
  035003	
  (2012).	
  

The University of Maryland has made excellent use of Warp 

Time	
  (ns) I. Haber, et al. NIM-A 577, 157-160 (2007) 
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Warp has proven useful to multiple applications 
•  HIFS-VNL (LBNL,LLNL,PPPL): ion beams and plasmas 
•  VENUS ion source (LBNL): beam transport 
•  LOASIS (LBNL): LWFA in a boosted frame 
•  FEL/CSR (LBNL): free e- lasers, coherent synch. radiation 
•  Anti H- trap (LBNL/U. Berkeley): model of anti H- trap 
•  U. Maryland: UMER sources and beam transport; teaching 
•  Ferroelectric plasma source (Technion, U. MD): source 
•  Fast ignition (LLNL): physics of filamentation  
•  E-cloud for HEP (LHC, SPS, ILC, Cesr-TA, FNAL-MI): 

     merged code Warp-POSINST 
•  Laser Isotope Separation (LLNL): now defunct 
•  PLIA (CU Hong Kong): pulsed line ion accelerator 
•  Laser driven ion source (TU Darmstadt): source 
•  Magnetic Fusion (LLNL): oblique sheath at tokamak divertor 
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Good times! (thanks again, Ned) 
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A few references … 

A. Friedman, D. P. Grote, and I. Haber, 
 “3-Dimensional particle simulation of heavy-ion fusion beams,”  
Phys. Fluids B 4, 2203 (1992). 
 
D. P. Grote, A. Friedman, J-L. Vay, and I. Haber,  
“The Warp code: modeling high intensity ion beams,”  
AIP Conf. Proc. 749, 55 (2005). 
 
J-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, 
 “Novel methods in the Particle-In-Cell accelerator  
code-framework Warp,”  
Comput. Sci. Discovery 5, 014019 (2012).  
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Abstract 
The Warp code (and its framework of associated tools) was initially developed for Particle-in-Cell 
simulations of space-charge-dominated ion beams in accelerators, for heavy-ion-driven inertial fusion 
energy and related experiments.  It has found a broad range of applications, including non-neutral 
plasmas in traps, stray “electron-clouds” in accelerators, laser-based acceleration, and the capture and 
focusing of ion beams produced when short-pulse lasers irradiate foil targets.   
   We present an overview of the novel methods that have been developed and implemented in Warp. 
These include a time-stepping formalism conducive to diagnosis and particle injection; an interactive 
Python / Fortran / C structure that enables scripted and interactive user “steering” of runs; a variety of 
geometries (3-D; 2-D r,z; 2-D x,y); electrostatic and electromagnetic field solvers using direct and iterative 
methods, including MPI parallelization; a Shortley-Weller cut-cell representation for internal boundaries 
(no restriction to “Lego bricks”); the use of “warped” coordinates for bent beam lines; Adaptive Mesh 
Refinement, including the capability of simulating time-dependent space-charge-limited flow from curved 
surfaces; models for accelerator “lattice elements” (magnetic or electrostatic quadrupole lenses, 
solenoids, accelerating gaps, etc.) at user-selectable levels of detail; models for particle interactions with 
gas and walls; moment/envelope models that support sophisticated particle loading; a “drift-Lorentz” 
mover for rapid tracking of species that traverse regions of strong and weak magnetic field; a Lorentz-
boosted frame formulation with a Lorentz-invariant modification of the Boris mover; and an 
electromagnetic solver with tunable dispersion and stride-based digital filtering. Use of Warp, together with 
the fast 1-D code ASP, to design LBNL’s new NDCX-II facility is also presented. 
  
1. D. P. Grote, A. Friedman, J-L. Vay, and I. Haber, “The Warp code: modeling high intensity ion beams,” 
AIP Conf. Proc. 749, 55 (2005). 
2. J-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, “Novel methods in the Particle-In-Cell accelerator 
Code-Framework Warp,” Comput. Sci. Discovery 5, 014019 (2012).  
 


